Let us prove theorems in chapter 11.5. It is worth to learn the proofs of those theorems.

Theorem 1 (Theorem 11.5A). Suppose that a sequence x_{n} with $x_{n} \neq a$ has the limit a, and $\lim _{x \rightarrow a} f(x)=L$. Then, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
Remind that $f(x)$ is not necessarily defined at a in the theorem.
Proof. Given $\epsilon>0$, there exists some $\delta>0$ such that $|f(x)-L|<\epsilon$ holds for $x \in(a-\delta, a+\delta) \backslash\{a\}$. Next, there exists a natural number N such that $\left|x_{n}-a\right|<\delta$ for $n \geq N$. Therefore, $\left|f\left(x_{n}\right)-L\right|<\epsilon$ holds for $n \geq N$, namely $\lim f\left(x_{n}\right)=L$.

Example 2. Let $\lim x_{n}=a$ and $f(x)$ be continuous at a. Then, $\lim f\left(x_{n}\right)=$ $f(a)$.
Proof. Since $f(x)$ is continuous at a, we have $\lim _{x \rightarrow a} f(x)=f(a)$. So, the above theorem implies the desired result.

Example 3. Let $f(x)$ be a continuous function defined on \mathbb{R}, and let $f(x) \leq$ 0 hold for all $x \in \mathbb{Q}$. Then, $f(x) \leq 0$ holds for all $x \in \mathbb{R}$.
Proof. Given a real number x and a natural number n, we choose a rational number $r_{n} \in\left(a-\frac{1}{n}, a+\frac{1}{n}\right)$. Then, we have $\lim r_{n}=a$. Since $f(x)$ is continuous, we have $\lim _{n \rightarrow \infty} f\left(r_{n}\right)=f(a)$ by the example above.

On the other hand, $f\left(r_{n}\right) \leq 0$ for all n, because $r_{n} \in \mathbb{Q}$. Thus, the limit location theorem for sequences gives $f(x)=\lim f\left(r_{n}\right) \leq 0$.

Theorem 4 (Theorem 11.5B). Let $f(x)$ be defined for $x \in\left(a-\delta_{0}, a+\delta_{0}\right) \backslash$ $\{a\}$. Suppose that for any sequence $\left\{x_{n}\right\}_{n \geq 0}$ with $x_{n}\left(a-\delta_{0}, a+\delta_{0}\right) \backslash\{a\}$ and $\lim x_{n}=a$, we have $\lim f\left(x_{n}\right)=L$. Then, $\lim _{x \rightarrow a} f(x)=L$ holds.
Proof. Assume that $f(x)$ does not converge to L as $x \rightarrow a$, namely diverges or converges to another number. Then, by definition of the limit, there exists $\epsilon>0$ such that given any $\delta \in\left(0, \delta_{0}\right),|f(x)-L| \geq \epsilon$ holds for some number $x \in(a-\delta, a+\delta) \backslash\{a\}$. Hence, for all natural number n with $\frac{1}{n}<\delta_{0}$, there exists a number $x_{n} \in\left(a-\frac{1}{n}, a+\frac{1}{n}\right) \backslash\{a\}$ such that $\left|f\left(x_{n}\right)-L\right| \geq \epsilon$. However, we have $\lim f\left(x_{n}\right)=L$ because $\lim x_{n}=a$. They are contradict.

Example 5. Let $f(x)$ be defined for $x \approx a$. Suppose that for any sequence $\left\{x_{n}\right\}_{n \geq 0}$ with $\lim x_{n}=a$, we have $\lim f\left(x_{n}\right)=f(a)$. Then, $f(x)$ is continuous at a.

Proof. The Theorem 11.5B and definition of limit yield the desired result.

Example 6. Let $f(x)$ be defined for $x \in\left(a, a+\delta_{0}\right)$. Suppose that for any sequence $\left\{x_{n}\right\}_{n \geq 0}$ with $x_{n} \in\left(a, a+\delta_{0}\right)$ and $\lim x_{n}=a$, we have $\lim f\left(x_{n}\right)=$ L. Then, $\lim _{x \rightarrow a^{+}} f(x)=L$ holds.

Proof. Assume that $f(x)$ does not converge to L as $x \rightarrow a^{+}$. Then, there exist some $\epsilon>0$ such that for each natural number n with $\frac{1}{n}<\delta_{0}$ we can choose a number $x_{n} \in\left(a, a+\frac{1}{n}\right)$ satisfying $\left|f\left(x_{n}\right)-L\right| \geq \epsilon$. However, we have $\lim f\left(x_{n}\right)=L$ because $\lim x_{n}=a$. They are contradict.

Example 7. We define $f(x)=\int_{x}^{1} \sin (1 / t) d t$ for $x \in(0,1)$. Then, $f(x)$ is right-continuous at 0 .

Proof. For $0<x \leq y<1$, we have

$$
\begin{equation*}
|f(x)-f(y)|=\left|\int_{x}^{y} \sin (1 / t) d t\right| \leq \int_{x}^{y}|\sin (1 / t)| d t \leq \int_{x}^{y} d t=|y-x| . \tag{1}
\end{equation*}
$$

Suppose that a sequence $\left\{y_{n}\right\}$ satisfies $y_{n} \in(0,1)$ and $\lim y_{n}=0$. Then, given $\epsilon>0$, there exists a large number N such that $\left|y_{n}\right|<\epsilon / 2$ holds for $n \geq N$. Therefore, $\left|y_{n}-y_{m}\right| \leq\left|y_{n}\right|+\left|y_{m}\right|<\epsilon$ holds for all $n, m \geq N$. Hence, combining with (1) yields

$$
\left|f\left(y_{n}\right)-f\left(y_{m}\right)\right| \leq\left|y_{n}-y_{m}\right|<\epsilon,
$$

for $n, m \geq N$, namely $\left\{f\left(y_{n}\right)\right\}$ is a Cauchy sequence. We denote by L the limit of $\left\{f\left(y_{n}\right)\right\}$.

Given $\epsilon \in(0,1)$, we have $\left|f\left(y_{n}\right)-L\right|<\epsilon / 2$ for $n \gg 1$. Since $\left|y_{n}\right|<\epsilon / 2$ for $n \gg 1$, there exist some term y_{N} of the sequence $\left\{y_{n}\right\}$ such that $y_{N} \in(0, \epsilon / 2)$ and $\left|f\left(y_{N}\right)-L\right|<\epsilon / 2$. Then, for any $x \in(0, \epsilon / 2)$ the following holds

$$
|f(x)-L| \leq\left|f(x)-f\left(y_{N}\right)\right|+\left|f\left(y_{N}\right)-L\right|<\left|x-y_{L}\right|+\frac{\epsilon}{2} \leq \epsilon .
$$

Therefore, $\lim _{x \rightarrow 0^{+}} f(x)=L$.

Exercise 8. Prove Example 7 by using Example 6 as follows:
(1) For any sequence $\left\{x_{n}\right\}$ with $\lim x_{n}=0,\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence and thus has the limit, as the proof above.
(2) Given two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with $\lim x_{n}=\lim y_{n}=0$, the limits of $\left\{f\left(x_{n}\right)\right\}$ and $\left\{f\left(y_{n}\right)\right\}$ are the same.
(3) Applying the result of Example 6 proves Example 7.

