Let us prove theorems in chapter 11.5. It is worth to learn the proofs of
those theorems.

Theorem 1 (Theorem 11.5A). Suppose that a sequence x,, with x,, # a has
the limit a, and lim f(x) = L. Then, lim f(x,) = L.

T—a n—00
Remind that f(x) is not necessarily defined at a in the theorem.

Proof. Given € > 0, there exists some ¢ > 0 such that |f(z) — L| < € holds
for z € (a—d,a+9) \ {a}. Next, there exists a natural number N such that
|zy, —a| < 0 for n > N. Therefore, |f(z,) — L| < € holds for n > N, namely
lim f(zy) = L. O

Example 2. Letlimx,, = a and f(z) be continuous at a. Then, lim f(x,) =

f(a).

Proof. Since f(zx) is continuous at a, we have lim f(x) = f(a). So, the
r—a

above theorem implies the desired result. O

Example 3. Let f(x) be a continuous function defined on R, and let f(z) <
0 hold for all x € Q. Then, f(xz) <0 holds for all x € R.

Proof. Given a real number x and a natural number n, we choose a rational
number 7, € (a — 1,a + 1). Then, we have limr, = a. Since f(z) is
continuous, we have lim f(r,) = f(a) by the example above.
n—oo
On the other hand, f(r,) < 0 for all n, because r, € Q. Thus, the limit
location theorem for sequences gives f(z) = lim f(r,) < 0. O

Theorem 4 (Theorem 11.5B). Let f(z) be defined for z € (a — do,a+ do) \
{a}. Suppose that for any sequence {xy, }n>0 with x,(a—dp,a+ )\ {a} and
lim x,, = a, we have lim f(x,) = L. Then, li_r>n f(x) = L holds.

r—a

Proof. Assume that f(z) does not converge to L as x — a, namely diverges
or converges to another number. Then, by definition of the limit, there exists
€ > 0 such that given any 6 € (0, ), |f(z) — L| > € holds for some number
z € (a—0,a+6)\ {a}. Hence, for all natural number n with 1 < &y, there
exists a number z,, € (a— 2, a+ 1)\ {a} such that |f(z,) — L| > e. However,
we have lim f(x,) = L because lim z,, = a. They are contradict. O

Example 5. Let f(x) be defined for x = a. Suppose that for any sequence
{zn}n>0 with imz, = a, we have lim f(zy,) = f(a). Then, f(z) is continu-
ous at a.

Proof. The Theorem 11.5B and definition of limit yield the desired result.
O
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Example 6. Let f(z) be defined for x € (a,a + dy). Suppose that for any
sequence {xp}n>0 with z, € (a,a+dy) and limz, = a, we have lim f(z,) =
L. Then, lim f(z) =L holds.

z—at
Proof. Assume that f(z) does not converge to L as x — a™. Then, there
exist some € > 0 such that for each natural number n with % < dp we can

choose a number z,, € (a,a + %) satisfying |f(z,) — L| > e. However, we
have lim f(x,) = L because lim z,, = a. They are contradict. O

Example 7. We define f(x) = fml sin(1/t)dt for x € (0,1). Then, f(x) is
right-continuous at 0.

Proof. For 0 < z <y < 1, we have

1) 1@ - ) =1 | " sin(1/6)dt] < / " | sin(1/8)|dt < / Tt =y — x|

Suppose that a sequence {y,} satisfies y,, € (0,1) and limy, = 0. Then,
given € > 0, there exists a large number N such that |y,| < €/2 holds for
n > N. Therefore, |y —Ym| < |yn|+ |ym| < € holds for all n,m > N. Hence,
combining with (1) yields

|f(yn) = Fym)| < lyn — ym| <,

for n,m > N, namely {f(y,)} is a Cauchy sequence. We denote by L the
limit of { f(yn)}-

Given € € (0,1), we have |f(yn) — L| < €/2 for n > 1. Since |y, | < €/2 for
n > 1, there exist some term yy of the sequence {y,, } such that yn € (0,¢/2)
and |f(yn) — L| < €/2. Then, for any = € (0,¢/2) the following holds

() = LI < |f (@) = Fm)] + 1) = Ll < Jo =] + 5 <
Therefore, h%lJr f(z)=L. O

Exercise 8. Prove FExample 7 by using Example 6 as follows:
(1) For any sequence {x,} with limx, = 0, {f(zy)} is a Cauchy se-
quence and thus has the limit, as the proof above.
(2) Given two sequences {x,} and {y,} with limz, = limy, = 0, the
limits of {f(xn)} and {f(yn)} are the same.
(3) Applying the result of Example 6 proves Example 7.



