
Let us prove theorems in chapter 11.5. It is worth to learn the proofs of
those theorems.

Theorem 1 (Theorem 11.5A). Suppose that a sequence xn with xn 6= a has
the limit a, and lim

x→a
f(x) = L. Then, lim

n→∞
f(xn) = L.

Remind that f(x) is not necessarily defined at a in the theorem.

Proof. Given ε > 0, there exists some δ > 0 such that |f(x) − L| < ε holds
for x ∈ (a− δ, a+ δ) \ {a}. Next, there exists a natural number N such that
|xn− a| < δ for n ≥ N . Therefore, |f(xn)−L| < ε holds for n ≥ N , namely
lim f(xn) = L. �

Example 2. Let limxn = a and f(x) be continuous at a. Then, lim f(xn) =
f(a).

Proof. Since f(x) is continuous at a, we have lim
x→a

f(x) = f(a). So, the

above theorem implies the desired result. �

Example 3. Let f(x) be a continuous function defined on R, and let f(x) ≤
0 hold for all x ∈ Q. Then, f(x) ≤ 0 holds for all x ∈ R.

Proof. Given a real number x and a natural number n, we choose a rational
number rn ∈ (a − 1

n , a + 1
n). Then, we have lim rn = a. Since f(x) is

continuous, we have lim
n→∞

f(rn) = f(a) by the example above.

On the other hand, f(rn) ≤ 0 for all n, because rn ∈ Q. Thus, the limit
location theorem for sequences gives f(x) = lim f(rn) ≤ 0. �

Theorem 4 (Theorem 11.5B). Let f(x) be defined for x ∈ (a− δ0, a+ δ0) \
{a}. Suppose that for any sequence {xn}n≥0 with xn(a−δ0, a+δ0)\{a} and
limxn = a, we have lim f(xn) = L. Then, lim

x→a
f(x) = L holds.

Proof. Assume that f(x) does not converge to L as x→ a, namely diverges
or converges to another number. Then, by definition of the limit, there exists
ε > 0 such that given any δ ∈ (0, δ0), |f(x)− L| ≥ ε holds for some number
x ∈ (a− δ, a+ δ) \ {a}. Hence, for all natural number n with 1

n < δ0, there

exists a number xn ∈ (a− 1
n , a+ 1

n)\{a} such that |f(xn)−L| ≥ ε. However,
we have lim f(xn) = L because limxn = a. They are contradict. �

Example 5. Let f(x) be defined for x ≈ a. Suppose that for any sequence
{xn}n≥0 with limxn = a, we have lim f(xn) = f(a). Then, f(x) is continu-
ous at a.

Proof. The Theorem 11.5B and definition of limit yield the desired result.
�
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Example 6. Let f(x) be defined for x ∈ (a, a + δ0). Suppose that for any
sequence {xn}n≥0 with xn ∈ (a, a+ δ0) and limxn = a, we have lim f(xn) =
L. Then, lim

x→a+
f(x) = L holds.

Proof. Assume that f(x) does not converge to L as x → a+. Then, there
exist some ε > 0 such that for each natural number n with 1

n < δ0 we can

choose a number xn ∈ (a, a + 1
n) satisfying |f(xn) − L| ≥ ε. However, we

have lim f(xn) = L because limxn = a. They are contradict. �

Example 7. We define f(x) =
∫ 1
x sin(1/t)dt for x ∈ (0, 1). Then, f(x) is

right-continuous at 0.

Proof. For 0 < x ≤ y < 1, we have

|f(x)− f(y)| = |
∫ y

x
sin(1/t)dt| ≤

∫ y

x
| sin(1/t)|dt ≤

∫ y

x
dt = |y − x|.(1)

Suppose that a sequence {yn} satisfies yn ∈ (0, 1) and lim yn = 0. Then,
given ε > 0, there exists a large number N such that |yn| < ε/2 holds for
n ≥ N . Therefore, |yn−ym| ≤ |yn|+ |ym| < ε holds for all n,m ≥ N . Hence,
combining with (1) yields

|f(yn)− f(ym)| ≤ |yn − ym| < ε,

for n,m ≥ N , namely {f(yn)} is a Cauchy sequence. We denote by L the
limit of {f(yn)}.

Given ε ∈ (0, 1), we have |f(yn)−L| < ε/2 for n� 1. Since |yn| < ε/2 for
n� 1, there exist some term yN of the sequence {yn} such that yN ∈ (0, ε/2)
and |f(yN )− L| < ε/2. Then, for any x ∈ (0, ε/2) the following holds

|f(x)− L| ≤ |f(x)− f(yN )|+ |f(yN )− L| < |x− yL|+
ε

2
≤ ε.

Therefore, lim
x→0+

f(x) = L. �

Exercise 8. Prove Example 7 by using Example 6 as follows:

(1) For any sequence {xn} with limxn = 0, {f(xn)} is a Cauchy se-
quence and thus has the limit, as the proof above.

(2) Given two sequences {xn} and {yn} with limxn = lim yn = 0, the
limits of {f(xn)} and {f(yn)} are the same.

(3) Applying the result of Example 6 proves Example 7.


