Let us prove theorems in chapter 11.5. It is worth to learn the proofs of those theorems.

Theorem 1 (Theorem 11.5A). Suppose that a sequence x_n with $x_n \neq a$ has the limit a, and $\lim_{x \to a} f(x) = L$. Then, $\lim_{n \to \infty} f(x_n) = L$.

Remind that f(x) is not necessarily defined at a in the theorem.

Proof. Given $\epsilon > 0$, there exists some $\delta > 0$ such that $|f(x) - L| < \epsilon$ holds for $x \in (a - \delta, a + \delta) \setminus \{a\}$. Next, there exists a natural number N such that $|x_n - a| < \delta$ for $n \ge N$. Therefore, $|f(x_n) - L| < \epsilon$ holds for $n \ge N$, namely $\lim f(x_n) = L$.

Example 2. Let $\lim x_n = a$ and f(x) be continuous at a. Then, $\lim f(x_n) = f(a)$.

Proof. Since f(x) is continuous at a, we have $\lim_{x \to a} f(x) = f(a)$. So, the above theorem implies the desired result.

Example 3. Let f(x) be a continuous function defined on \mathbb{R} , and let $f(x) \leq 0$ hold for all $x \in \mathbb{Q}$. Then, $f(x) \leq 0$ holds for all $x \in \mathbb{R}$.

Proof. Given a real number x and a natural number n, we choose a rational number $r_n \in (a - \frac{1}{n}, a + \frac{1}{n})$. Then, we have $\lim r_n = a$. Since f(x) is continuous, we have $\lim_{n \to \infty} f(r_n) = f(a)$ by the example above.

On the other hand, $f(r_n) \leq 0$ for all n, because $r_n \in \mathbb{Q}$. Thus, the limit location theorem for sequences gives $f(x) = \lim f(r_n) \leq 0$.

Theorem 4 (Theorem 11.5B). Let f(x) be defined for $x \in (a - \delta_0, a + \delta_0) \setminus \{a\}$. Suppose that for any sequence $\{x_n\}_{n\geq 0}$ with $x_n(a-\delta_0, a+\delta_0) \setminus \{a\}$ and $\lim x_n = a$, we have $\lim f(x_n) = L$. Then, $\lim_{x \to a} f(x) = L$ holds.

Proof. Assume that f(x) does not converge to L as $x \to a$, namely diverges or converges to another number. Then, by definition of the limit, there exists $\epsilon > 0$ such that given any $\delta \in (0, \delta_0)$, $|f(x) - L| \ge \epsilon$ holds for some number $x \in (a - \delta, a + \delta) \setminus \{a\}$. Hence, for all natural number n with $\frac{1}{n} < \delta_0$, there exists a number $x_n \in (a - \frac{1}{n}, a + \frac{1}{n}) \setminus \{a\}$ such that $|f(x_n) - L| \ge \epsilon$. However, we have $\lim f(x_n) = L$ because $\lim x_n = a$. They are contradict. \Box

Example 5. Let f(x) be defined for $x \approx a$. Suppose that for any sequence $\{x_n\}_{n\geq 0}$ with $\lim x_n = a$, we have $\lim f(x_n) = f(a)$. Then, f(x) is continuous at a.

Proof. The Theorem 11.5B and definition of limit yield the desired result.

 \square

Example 6. Let f(x) be defined for $x \in (a, a + \delta_0)$. Suppose that for any sequence $\{x_n\}_{n\geq 0}$ with $x_n \in (a, a + \delta_0)$ and $\lim x_n = a$, we have $\lim f(x_n) = L$. Then, $\lim_{x\to a^+} f(x) = L$ holds.

Proof. Assume that f(x) does not converge to L as $x \to a^+$. Then, there exist some $\epsilon > 0$ such that for each natural number n with $\frac{1}{n} < \delta_0$ we can choose a number $x_n \in (a, a + \frac{1}{n})$ satisfying $|f(x_n) - L| \ge \epsilon$. However, we have $\lim f(x_n) = L$ because $\lim x_n = a$. They are contradict. \Box

Example 7. We define $f(x) = \int_x^1 \sin(1/t) dt$ for $x \in (0,1)$. Then, f(x) is right-continuous at 0.

Proof. For $0 < x \le y < 1$, we have

(1)
$$|f(x) - f(y)| = |\int_x^y \sin(1/t)dt| \le \int_x^y |\sin(1/t)|dt \le \int_x^y dt = |y - x|.$$

Suppose that a sequence $\{y_n\}$ satisfies $y_n \in (0, 1)$ and $\lim y_n = 0$. Then, given $\epsilon > 0$, there exists a large number N such that $|y_n| < \epsilon/2$ holds for $n \ge N$. Therefore, $|y_n - y_m| \le |y_n| + |y_m| < \epsilon$ holds for all $n, m \ge N$. Hence, combining with (1) yields

$$|f(y_n) - f(y_m)| \le |y_n - y_m| < \epsilon,$$

for $n, m \ge N$, namely $\{f(y_n)\}$ is a Cauchy sequence. We denote by L the limit of $\{f(y_n)\}$.

Given $\epsilon \in (0, 1)$, we have $|f(y_n) - L| < \epsilon/2$ for $n \gg 1$. Since $|y_n| < \epsilon/2$ for $n \gg 1$, there exist some term y_N of the sequence $\{y_n\}$ such that $y_N \in (0, \epsilon/2)$ and $|f(y_N) - L| < \epsilon/2$. Then, for any $x \in (0, \epsilon/2)$ the following holds

$$|f(x) - L| \le |f(x) - f(y_N)| + |f(y_N) - L| < |x - y_L| + \frac{\epsilon}{2} \le \epsilon.$$

Therefore, $\lim_{x \to 0^+} f(x) = L.$

Exercise 8. Prove Example 7 by using Example 6 as follows:

- (1) For any sequence $\{x_n\}$ with $\lim x_n = 0$, $\{f(x_n)\}$ is a Cauchy sequence and thus has the limit, as the proof above.
- (2) Given two sequences $\{x_n\}$ and $\{y_n\}$ with $\lim x_n = \lim y_n = 0$, the limits of $\{f(x_n)\}$ and $\{f(y_n)\}$ are the same.
- (3) Applying the result of Example 6 proves Example 7.